16,609 research outputs found

    Dynamical Properties of a Two-gene Network with Hysteresis

    Get PDF
    A mathematical model for a two-gene regulatory network is derived and several of their properties analyzed. Due to the presence of mixed continuous/discrete dynamics and hysteresis, we employ a hybrid systems model to capture the dynamics of the system. The proposed model incorporates binary hysteresis with different thresholds capturing the interaction between the genes. We analyze properties of the solutions and asymptotic stability of equilibria in the system as a function of its parameters. Our analysis reveals the presence of limit cycles for a certain range of parameters, behavior that is associated with hysteresis. The set of points defining the limit cycle is characterized and its asymptotic stability properties are studied. Furthermore, the stability property of the limit cycle is robust to small perturbations. Numerical simulations are presented to illustrate the results.Comment: 55 pages, 31 figures.Expanded version of paper in Special Issue on Hybrid Systems and Biology, Elsevier Information and Computation, 201

    Renormalization of the EWCL and its Application to LEP2

    Full text link
    We perform a systematic one-loop renormalization on the electroweak chiral Lagrangian (EWCL) up to O(p4)O(p^4) operators and construct the renormalization group equations (RGE) for the anomalous couplings. We examine the impact of the triple gauge coupling (TGC) measurement from LEP2 to the uncertainty of the STS-T parameter at the Λ=1TeV\Lambda=1 TeV, and find that the uncertainty in the TGC measurements can shift S(Λ)S(\Lambda) at least 3.3σ3.3 \sigma.Comment: 4 pages, 1 eps figure, uses ws-ijmpa.cls. Paralell talk given at "International Conference on QCD and hadronic Physics", Beijing, China, 16-20 June, 200

    Varieties of Mathematics in Economics- A Partial View

    Get PDF
    Real analysis, founded on the Zermelo-Fraenkel axioms, buttressed by the axiom of choice, is the dominant variety of mathematics utilized in the formalization of economic theory. The accident of history that led to this dominance is not inevitable, especially in an age when the digital computer seems to be ubiquitous in research, teaching and learning. At least three other varieties of mathematics, each underpinned by its own mathematical logic, have come to be used in the formalization of mathematics in more recent years. To set theory, model theory, proof theory and recursion theory correspond, roughly speaking, real analysis, non-standard analysis, constructive analysis and computable analysis. These other varieties, we claim, are more consistent with the intrinsic nature and ontology of economic concepts. In this paper we discuss aspects of the way real analysis dominates the mathematical formalization of economic theory and the prospects for overcoming this dominance.
    corecore